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Abstract. We use a technique due to Spruch to investigate lower bounds for the eigenvalues 
of the following problems: (1) one particle in one dimension; (2)  one particle moving in 
two and three dimensions; ( 3 )  N particles moving in one dimension. In all cases existence 
theorems for bound states are obtained. 

1. Introduction 

A very simple lower bound for the energy E of the ground state of a Schrodinger 
particle moving in one dimension under the influence of a potential V was derived by 
Spruch (1961). It states that E > E6 where E& is the energy of the bound state of the 
particle in the presence of a (&function) potential V,(x) = -16(x) with I = 1’ I V-I dx 
(the integral of the negative part V- of the potential V). 

Now, the N-body problem for a system of identical particles of mass m moving 
in one dimension with a two-body interaction A Xz,=, 6(x, - x,) is also solvable 
(McGuire 1964). In particular for A < O  the energy of the (unique) bound state is 
explicitly given by E‘,” = - A 2 ( m / 2 4 f i 2 ) N ( N 2 -  1). It is therefore natural to conjecture 
the validity of the analogue bound 

E”’> ELW) (1) 

for the energy E”’ of the ground state of a system of N identical particles in one 
dimension interacting via a two-body potential V(x, - x,). Here A = I = 5 I V-(x)l dx. 
For N > 2 ,  however, this result is far less trivial, as the original variational argument 
of Spruch (1961) is not sufficient. In this paper we show that (1) is valid for a large 
class of two-body interactions. The proof we present here uses the elegant log-concavity 
techniques in Lieb and Simon (1978). 

For dimension v = 2 or 3 we can establish only a much weaker result based on an 
extension of Spruch’s (1961) result to this case combined with the Hall-Post theorem 
(Hall and Post 1967). 

This paper is organised as follows. In 0 2 we revisit and extend for higher dimension 
the results of Spruch (1961). As a byproduct of our method we rederive some results 
of Simon (1976) and Klaus (1977) concerning necessary conditions for the existence 
of bound states of a particle moving in a potential in v = 1 dimension. We obtain 
lower bounds for the energy of the ground state and, in the case of even potentials, 
for the first excited state of the particle also. For v = 3 the Jost-Pais conditions (Jost 
and Pais 1951) are rederived. For dimensions v = 2 , 3  lower bounds are obtained for 
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the energy of the ground state of a particle in a potential. The proof of (1) appears 
in § 3. In this section we also extend for N > 2 the results of Simon (1976) and Klaus 
(1977) concerning the absence of bound states in v = 1 for an arbitrarily weak and 
globally repulsive ( j  V dx  > 0 )  potential. We also discuss some lower bounds for N 
particle systems. 

2. One particle in a potential 

Assuming that a particle moving in a potential has a bound state we shall obtain a 
lower bound for its energy. In v = 1 dimension this is done by using a technique due 
to Spruch (1961). In v = 2, 3 dimensions we first have to extend Spruch’s technique 
and then use it to obtain lower bounds. In order to avoid technicalities that could 
obscure the method, unless otherwise stated we shall assume V E C,“( R ”) (i.e. infinitely 
differentiable and of compact support), even though the results are valid under far 
less stringent assumptions. The mathematically inclined reader will find no difficulty 
in supplying more general conditions. 

We start with the one-dimensional case for which we are able to provide lower 
bounds also for the first excited state if the potential is parity invariant. In one 
dimension we use the following theorem. 

Theorem 1. (Spruch 1961). Let V-(x) be the negative part of V(x). Then, of all 
potentials V(x) with the same value of I = I V-(x)l dx, the &function potential has 
the lowest energy. Hence, a lower bound for the ground-state energy is E ( ’ ) =  

- ( p / 2 h 2 ) 1 2  ( p  is the mass of the particle or the reduced mass in the two-body case). 
Since the basic argument used in the proof will be repeatedly used in this work we 
shall present it here. 

ProoJ Let $ be the exact normalised ground-state wavefunction of Ho+ V.  So 
oc 

E‘O’=($,[Ho+ v I a ) = ( $ , H , $ ) + I  -X I$(x)l’V(x)dx. (2) 

Let l$(a)l  be the maximum value of l$(x)I. Then 

v, = -IS(x - a ) .  (4) 
And, from the variational principle, ($, (Ho+ V,)$) E ( ’ ) ,  thus proving the 
theorem. 

Now, suppose the potential is parity invariant, V(x) = V(-x), the above technique 
provides a necessary condition for the existence of a first excited state and a lower 
bound for its energy. This is the content of the following theorems 2 and 3. 

Theorem 2. Given a particle moving in a one-dimensional parity-invariant potential 
V(x), a necessary condition for the existence of a (bound) first excited state is 
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Proof: Assume that there exists a first excited state of Ho+ V. Let $ I - '  be its normalised 
wavefunction (the '--I indicates negative parity). Then 

X 

E ( "  = ( $ ( - I ,  H$'-I) = ( $ 1 - 1 ,  Ho$(-J )+I dxl$(-'(x)12V(x) dx. ( 6 )  
--x 

Let x = a be the point where / X ~ - ' ~ $ ' - ~ ( X ) I ~ I  is maximum. By symmetry we have 
\ a - ' ~ $ ( - i ( a ) ~ 2 ~  = \ - ~ - ' ~ $ ( - ' ( - a ) ~ ~ ~  and so 

where 

From the variational principle 

($'-I ,  Ho$(-l)+ ( $ ' - I ,  v2,s$(-j) 3 E$;; (9) 

(E::! is the energy of the first excited state of Ho+ V2,4 so that 

(10) E" '>  E"' 
2,s . 

A simple explicit computation shows that the Hamiltonian Ho+ V2,6 will have a bound 
first excited state only if condition ( 5 )  is satisfied, and so the theorem is proved. 

Now, a lower bound for the energy of the first excited state of a particle moving in a 
globally attractive (i.e. V(x) dx < 0) symmetric potential is obtained by using the fact 
that when a + 00 there is a degeneracy of the ground state with the first excited state 
of the Hamiltonian 

H = p 2 / 2 p  +B[S(x+ a ) +  6(x-  a ) ] .  

Actually the ground-state energy E!:;( a )  increases monotonically and the first excited 
state energy E $ (  a )  decreases monotonically with increasing a, degenerating when 
a + a  to 

E::&) = E:';(m) = - (p/2h2)B2. 

Thus we have theorem 3.  

Theorem 3. A lower bound for the energy of the first excited state of a particle moving 
in a one-dimensional symmetric potential V(x) is 

E ( ' ) =  - i ( p / h 2 ) 1 2 .  (12) 

Proof: Let $'-I be the normalised wavefunction of the first excited state of H = Ha+ V. 
Then its energy is 

oc 

E'"= ($(-I, H$'- ' )  = ($'-', Ho$(- ' )  + 1 l$(-'(x)12V(x) dx. 
-a 
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Let x = * a  be the points of maximum of l$‘-)(x)l. Hence, as $ ( - ) ( a )  = -$‘-’(-U), 
X 

E“’  L ($(-), H,$(- ) )  + [ 1 $‘-I( U )  1’ + I $i-’(  - U )  /’I V-( X )  d x  L 
= (p), Ho$i-’)+($l-’ ,  v;,J$‘-]) 

where 

= - f I [6 (x  + a )  + S ( x  - a ) ] .  

Therefore t h e j r s t  excited state of H,+ Vi,6 provides a lower bound for the first excited 
state of H. And using equation (1 l ) ,  equation (12) follows, thus proving the theorem. 

Remark. The lower bound (12) to the energy of the first excited state of a symmetric 
potential in one dimension coincides with the lower bound (16) to the energy of the 
ground state of a spherical potential in v = 2 , 3  dimensions. 

Now, if we take into account the contribution of the repulsive part of the potential, a 
better lower bound can be obtained using the central idea of replacing the potential 
by conveniently chosen 6 functions. To illustrate this technique we present below a 
variational proof of the following theorem, first proved by Simon (1976) and Klaus 
(1977). 

Theorem 4. Let Vt(x) = V ( x )  - V-(x), then if jyE V(x)  d x  > 0 and supp V- is compact, 
H = H,+ A V(x) has no bound states for A > 0 sufficiently small. 

Proof: Let us first consider the case where supp  V+ is also compact. Suppose Ho+ A V 
has a ground state of negative energy E for all A > 0. Let $A (x )  be its normalised 
wavefunction. Now, GA(x) is a positive and continuous (in fact twice differentiable) 
function. This implies that there exists x+(A) E supp V+ such that I ) I ~ ( x + ( A ) )  = 
minxcsuppV+ CLA(x). Let now x_(A) be such that $,,(x-(A)) = max,,,,ppv_ $,,(x), then 

E = ( $ A ,  (HO+AV)$A) 
X 

=!$A, H o $ A ) + ~  I V(X)I$A(X)I*dX 

> ($A, HO$A - A I ( $ ,  (x-(A ) I 2  
- X  

AI’ /$A (x+(A ) I 2  

where 

v ~ , A ( x )  = - I ~ ( x - x - ( A ) ) + z ’ ~ ( x - x , ( A ) )  
Jc X 

I ! =  I-, V+ d x  > I = 1 V-/ dx. 

Now, a simple calculation shows that when A + O  the Hamiltonian Ho+AV,,, has no 
bound states provided x + ( A )  and  x - ( A )  vary over fixed compact sets. 

If supp V+ is not compact, let V,”= V R -  V- where V R ( x ) =  V(x) if 1x1s R and 
VR(x)  = 0 for 1x1 > R.  Now, V,” has compact support and, for sufficiently large R, 

VR(x)  d x  > 0 and  so Ho+ A VR has no bound state for A > 0 sufficiently small. Since 
V z VR, the same conclusion applies to Ho+ A V, thus concluding the proof. 

L 
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Remark. If the supp V- is not compact, then some restriction on its tail has to be 
imposed for if V(x) - -I/X’+~ ( O <  E < 1)  as x -f CO, then Ho+ AV(x) has an infinite 
number of bound states for any A > 0 (Simon 1970, Perez et a1 1986). 

We shall now extend Spruch’s technique to obtain necessary conditions for the existence 
of bound states for a particle moving in two and three dimensions. This is the content 
of theorem 5 t .  

Theorem 5. A particle moving in a central potential V( r) in v = 2 , 3  dimensions will 
have a bound state with an angular momentum 1 only if 

ProoJ: Let $! be the normalised wavefunction of the lowest bound state of Ho+ V(r) 
with angular momentum 1. Let El be its energy. Then 

E, = ( $ 1 ,  H+f) = (44,  HO+I) + 1 dS1 Iom /+,(r)~*V(r)r”-’  dr. 

Let r =  a be the point where r’-2\$f(r)12 is maximum. Then 
X 

Ef2(+, ,  Ho+,)+(v-1)2rra”-21+,(a)12 1 V-(r)rdr 
0 

= ( + I ,  HO+l)+(+l, V,$f) 
where 

A v, = - - S ( r - a )  
U 

with 
f X  

A = J IV-(r)lrdr. 
0 

Now, if E:  is the energy of the lowest bound state (with angular momentum I )  of 
Ho+ V,, from the variational principle, 

E f 2 E f .  (15) 
An elementary calculation shows that Ho+ V, has a bound state of angular momen- 

tum I only if condition (14) is satisfied and this completes the proof. 

The approach used supplies only the lower bound zero on the ground state of potentials 
which satisfy equation (14). Thus, the bounding potential is V, = ( - A /  a)S(  r - a ) ,  for 
some unknown value of a. Since V, generates an energy of --CO for a = 0 and an energy 
zero for a =CO,  and since we do not know the appropriate value of a, we can say 
nothing about the binding energy. We will return to the question of a lower bound in 
theorem 7.  

From theorem 5 we see that for v = 3 a necessary condition for the existence of a 
bound state of a particle moving in a central potential V ( r )  is that 
(2p/  A * )  JY I (  V-( r)l d r  > 1 which is the necessary condition of Jost and Pais (1951). 

i Extension to dimension v > 3 is straightforward. 
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Remark. For v = 2 theorem 5 suggests that any two-dimensional well could have at 
least one bound state. In fact, a sufficient condition for the existence of at least one 
bound state is that the well be globally attractive: 5 V( r )  d2r  < 0 (Simon (1976); see 
Coutinho et a1 (1983) for a variational proof that extends to N particles). If the 
two-dimensional potential is not globally attractive we have the following theorem 
(Simon 1976, Klaus 1977). 

Theorem 6. If 5 V (  r )  d2r  > 0 and supp V- is compact then the two-dimensional Hamil- 
tonian H = Ho+ AV( r )  has no bound states for A sufficiently small. The proof follows 
closely that of the corresponding one-dimensional case (theorem 4) so we shall not 
repeat it here. 

Remark. If supp V- is not compact some restrictions must again be imposed on the 
decay rate of V- since if V ( r )  s - f ( r  In r ) - 2  for large r, there are infinitely many bound 
states (Perez er a1 1986). 

The following theorem extends theorem 3 for v = 2,3 dimensions. 

Theorem 7. A lower bound for the energy of the point spectrum of a particle moving 
in a spherical potential V (  r )  in v = 2,3 dimensions is 

;= - (p /2h2) i2  (16) 

where 

ProoJ: Let + be an eigenstate of H = Ho+ V ( r )  and E its energy. Then 

E = (4, W )  = (+, Ha+)+ [ dfi [ r”- ’  d r  V(r) /+(r )12 .  

Let r = a be the point of maximum of r ” - ’ / + ( r ) I 2 .  Then 

E a(+, ~ ~ + ) + ( ~ - 1 ) 2 . r r a ~ - ’ ~ + ( a ) l ~ ~  

= (4, Ha+) + (43 %+L) 

where - 
V, = - i a (  r - a )  

and, from the variational principle, 
I 

E 3 E, 

where & is the eigenvalue of Ho+ c6. 
minimum value E =  - ( p / 2 h 2 ) i 2  and this completes the proof. 

Now, when a + 00 all the eigenvalues of Ho+ p6 degenerate monotonically at the 
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Note that, as opposed to V, = - (A/a)G(r-a) ,  the potential q6 = - i b ( r - a )  gives a 
finite binding energy for all a, and can therefore supply a lower bound E‘ on the energy. 
On the other hand, since the energy associated with Fa ranges from its value at a = 0, 
;(a = 0), which is negative, to ; (a  = C O )  = - ( p / 2 h 2 ) i 2 ,  this approach cannot generate 
the necessary condition for the existence of a bound state given by equation (14). ( In  
fact, it generates the necessary condition for the existence of a bound state with an 
energy below & ( U  = O).) 

3. The N-particle case 

We now turn to the N-body problem. Sufficient conditions for the existence of an 
N-particle bound state were given by Coutinho et a1 (1983, 1984) and by Perez e? a1 
(1985) for v = 1 , 2  and 3. We shall extend Spruch’s technique to obtain lower bounds 
for the energy of an N-particle bound state. This can be done only for the case of N 
particles moving in one dimension because it requires exactly solving the problem of 
N particles interacting via a 6 potential. 

In one dimension if the interparticle potential is globally attractive there always 
exists a bound state of N particles. The lower bound for its energy is given by the 
following theorem. 

Theorem 8. A lower bound for the ground-state energy of N identical bosons of mass 
m moving in one dimension and interacting via a globally attractive potential is given 
by the ground-state energy of N particles interacting via the potential V, = - IS(x, - xj) 
( I  = jzs 1 V-(x)l dx).  Hence (McGuire 1964) a lower bound is 

E =-(m/24h2)N(N2-1)12.  (18) 

Boo$ Let V be the exact symmetric normalised wavefunction of the ground state of 
H = Ho+Z,,, V(x, -x,). Then its energy is 

E = (V, HoV) + 

N 

N ( N  - l )  5 dp sob) V b )  (19) 2 

where p ( p )  = lV(x, p) / ’  dx, p = x, - x2 and x stands for all the other coordinates. 
Let p = po be the point of maximum of cp(p).  Then, 

L 

Now, the case po = 0 is exactly solvable (McGuire 1964) and we now show that the 
minimum energy occurs at this value of po. 
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Theorem 9. The ground-state energy of the Hamiltonian 

is a minimum when po = 0. 

R u o j  The proof is adapted from an article by Lieb and Simon (1978) on the monotonic- 
ity of the electronic contribution to the Born-Oppenheimer energy. 

Consider a Hamiltonian H(po) = Ho+ V, depending on a parameter pa.  Then the 
ground-state energy is given by 

E(PJ = -jim -00 P-' log(+, exp(-PH(p0)M) (23) 

where (I, is any function not orthogonal to the ground state. We shall take (I, = exp( -x2) 
positive for any x value and hence not orthogonal to the ground state. 

Using the Trotter formula we can write 

For n finite we have 

{(I,, [exp( -RHO) exP(-fv,)]n(I,) 

= [ (I,, exp ( - f H,) exp ( - f V,) . . . exp ( - f Ho) exp ( - f V,) (I,] 

= C dx, . . . dxn+, exp(-x;+,) I 
C being a global normalisation constant. 

Now, for the Hamiltonian (22) we have 

The S functions may be approximated by bell-shaped functions U,, and so 

Now, the exponential term on the right-hand side of this last equation is a symmetric 
decreasing function in t! = IxF -.,"I - po and therefore is an integral with positive 
weight dp, of characteristic functions of intervals (Simon 1979). That is, we can write 
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where ,y: is a characteristic function of an interval and therefore log concave (5: = IxF - 
xfl - p o ) .  Substitution of the above expression in (24), after integration on the variables 
x I ,  . . . , x,,,~, results in 

where S denotes all the 6:. 
Now, by the PrCkopa theorem (PrCkopa 1971), f ( &  po) is log concave in p o  and so 

is the left-hand side of (25). Therefore E(po)  given in (23) increases monotonically 
with po and the theorem is proved. 

Remark. A theorem by Hall and Post (1967) gives a lower bound for the N-particle 
problem in terms of the ground state of a modified two-particle problem. Using their 
theorem the following lower bound is obtained 

- ( m / 1 6 h 2 ) N 2 ( N -  1)12. (26) 
This lower bound is worse than the one given by theorem 8. 

Remark. It would be nice to extend theorem 2 to the N-particle case and thus obtain 
a necessary condition for the existence of an antisymmetric bound state. But we were 
unable to obtain the corresponding analytic solution of (21). Numerical solutions can 
be obtained. 

Remark. It is easy to show that the solution of the N-body problem given by (21) 
tends to a finite limit when a+00. We think that this limit is ~N'E '* ' (u+oo)  for N 
even and $(  N 2  - l )E '" (  a + 00) for N odd, where E'" is the energy of a particle moving 
in the potential B [ G ( x - a ) + S ( x +  a ) ] .  We conjecture that the values given above are 
exact. 

We shall now extend theorem 4 to the N-particle case. 

Theorem 10. If the interparticle potential V ( x ,  - x j )  is not globally attractive then the 
many-body Hamiltonian 

H = H o +  A V ( l x , - x J / )  
' > J  

has no bound states for sufficiently small A. 

Prooj The proof follows the proofs of theorems 4 and 8. We prove that the ground-state 
energy of H is greater than the ground-state energy of 

(28) = H~ - A z s ( I x ,  - xj I - X -  ( A )) + AI' C s ( /x, - xj I - x + ( A ) ). 
$ > I  i>j 

Removing the centre-of-mass energy from (28) we obtain 
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Now the Hall and Post (1967) theorem gives as a lower bound for (29) the energy of 
the two-body Hamiltonian: 

N [ - A I S ( d p  - x - ( A ) ) + A I ’ S ( d ? p  -x+(A))]) 

where p = (x, - x , ) / d 2 ;  hence for A sufficiently small (27) has no bound state. 

Remark. It iznot too difficult to prove the existence of a bound state for the N-particle 
problem if s-, V ( x )  dx = 0 using the technique described by Coutinho et a1 (1983). 
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